首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4051篇
  免费   444篇
  国内免费   1044篇
  2024年   16篇
  2023年   152篇
  2022年   169篇
  2021年   231篇
  2020年   219篇
  2019年   296篇
  2018年   195篇
  2017年   167篇
  2016年   165篇
  2015年   212篇
  2014年   223篇
  2013年   299篇
  2012年   165篇
  2011年   222篇
  2010年   205篇
  2009年   209篇
  2008年   230篇
  2007年   211篇
  2006年   226篇
  2005年   243篇
  2004年   176篇
  2003年   193篇
  2002年   167篇
  2001年   106篇
  2000年   89篇
  1999年   84篇
  1998年   88篇
  1997年   62篇
  1996年   61篇
  1995年   55篇
  1994年   42篇
  1993年   48篇
  1992年   37篇
  1991年   27篇
  1990年   26篇
  1989年   22篇
  1988年   22篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   25篇
  1983年   16篇
  1982年   21篇
  1981年   18篇
  1980年   11篇
  1979年   11篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1973年   5篇
排序方式: 共有5539条查询结果,搜索用时 46 毫秒
1.
Fractal geometry is a potentially valuable tool for quantitatively characterizing complex structures. The fractal dimension (D) can be used as a simple, single index for summarizing properties of real and abstract structures in space and time. Applications in the fields of biology and ecology range from neurobiology to plant architecture, landscape structure, taxonomy and species diversity. However, methods to estimate the D have often been applied in an uncritical manner, violating assumptions about the nature of fractal structures. The most common error involves ignoring the fact that ideal, i.e. infinitely nested, fractal structures exhibit self-similarity over any range of scales. Unlike ideal fractals, real-world structures exhibit self-similarity only over a finite range of scales.Here we present a new technique for quantitatively determining the scales over which real-world structures show statistical self-similarity. The new technique uses a combination of curve-fitting and tests of curvilinearity of residuals to identify the largest range of contiguous scales that exhibit statistical self-similarity. Consequently, we estimate D only over the statistically identified region of self-similarity and introduce the finite scale- corrected dimension (FSCD). We demonstrate the use of this method in two steps. First, using mathematical fractal curves with known but variable spatial scales of self-similarity (achieved by varying the iteration level used for creating the curves), we demonstrate that our method can reliably quantify the spatial scales of self-similarity. This technique therefore allows accurate empirical quantification of theoretical Ds. Secondly, we apply the technique to digital images of the rhizome systems of goldenrod (Solidago altissima). The technique significantly reduced variations in estimated fractal dimensions arising from variations in the method of preparing digital images. Overall, the revised method has the potential to significantly improve repeatability and reliability for deriving fractal dimensions of real-world branching structures.  相似文献   
2.
Peroxidase oxidation of o-dianisidine, 3,3′,5,5′-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant, was spectrophotometrically studied. It was found that 0.1–100 mM SDS concentrations stabilize intermediates formed in the peroxidase oxidation of these substrates. The cause of the stabilization is an electrostatic interaction between positively charged intermediates and negatively charged surfactant.  相似文献   
3.
4.
人工微生物混菌系统的生物工程应用价值日益受到重视,使得对于混菌系统中成员菌间的相互作用机制研究也成为近年来的一个热点。其研究结果一方面可以为现有人工混菌系统的进一步优化提供理论依据,另一方面也为全新混菌系统的人工构建提供新的思路和策略,进而促进人工微生物混菌系统未来规模化应用。基因组学、转录组学、蛋白质组学和代谢组学等研究方法能够高通量分析各种生物分子、提供大量的数据与信息,多组学分析可以获得混菌系统中细胞的“全景”,在揭示人工微生物混菌系统中各个成员间的相互作用的研究中有着特殊的意义。文中综述了近年来多种组学技术在人工微生物混菌系统机制解析中的应用及研究进展,从代谢网络、能量代谢、信号转导、膜转运、胁迫响应、混菌系统的稳定性以及结构合理性等方面探讨混菌系统机制解析的最新进展,以期为利用合成生物学、基因组编辑等新兴生物技术改造微生物混菌系统实现其工程化应用提供理论依据。  相似文献   
5.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
6.
Data on the interaction of DNA type I topoisomerases from the murine and human placenta cells with specific and nonspecific oligonucleotides of various structures and lengths are summarized. The relative contributions of various contacts between the enzymes and DNA that have previously been detected by X-ray analysis to the total affinity of the topoisomerases for DNA substrates are estimated. Factors that determine the differences in the enzyme interactions with specific and nonspecific single- and double-stranded DNAs are revealed. The results of the X-ray analysis of human DNA topoisomerase I are interpreted taking into account data on the comprehensive thermodynamic and kinetic analysis of the enzyme interaction with the specific and nonspecific DNAs.  相似文献   
7.
《Molecular cell》2021,81(20):4271-4286.e4
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   
8.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
9.
For several decades only one chemical pathway was known for the de novo biosynthesis of the essential DNA nucleotide, thymidylate. This reaction catalyzed by thyA or TYMS encoded thymidylate synthases is the last committed step in the biosynthesis of thymidylate and proceeds via the reductive methylation of uridylate. However, many microorganisms have recently been shown to produce a novel, flavin-dependent thymidylate synthase encoded by the thyX gene. Preliminary structural and mechanistic studies have shown substantial differences between these deoxyuridylate-methylating enzymes. Recently, both the chemical and kinetic mechanisms of FDTS have provided further insight into the distinctions between thyA and thyX encoded thymidylate synthases. Since FDTSs are found in several severe human pathogens their unusual mechanism offers a promising future for the development of antibiotic and antiviral drugs with little effect on human thymidylate biosynthesis.  相似文献   
10.
Competition between mycelia of saprotrophic cord-forming basidiomycetes occurs both within dead woody resources and in the soil-litter interface, and involves a variety of antagonistic mechanisms including the production of volatile organic compounds (VOCs). The antagonistic potential of VOC profiles from interactions in wood blocks and in soil microcosms was assessed using shared headspace experiments, and the profile of VOCs emitted over the course of interactions elucidated using solid phase microextraction (SPME) with gas chromatography-mass spectrometry (GC–MS). Quantitative and qualitative changes in VOC production occurred in interactions compared to self-pairing controls, with different VOC profiles from fungi growing in wood blocks compared to soil trays. There were both stimulatory and inhibitory effects of VOCs on target mycelial extension rate, hyphal coverage and fractal dimension. VOC-mediated effects were greater in self-pairing controls compared to interactions, and differed depending on the substratum in which the VOC-producing fungi were growing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号